News

News

Scientists develop a biodegradable alloy for bone implants for fractures, osteoporosis and myeloma

Data: 2020-07-22
Views: 222

Scientists Develop a Biodegradable Alloy for Bone Implants for Fractures, Osteoporosis and Myeloma


Material scientists from NUST MISIS and the University of Western Australia have presented an innovative bioresorbable alloy based on magnesium, gallium and zinc. The material can be used for the manufacture of temporary implants in the treatment of fractures and the restoration of surgically removed areas of the bone, as well as in the treatment of osteoporosis, multiple myeloma, Paget's disease. 


In modern bone implantology and cardiovascular surgery, biodegradable implants, which gradually dissolve and are replaced by body tissues are increasingly being used. This approach helps minimize the inflammation of the surrounding tissue caused by the implant and eliminates the need for an implant removal operation. The benefits of using such implants are especially noticeable in pediatric orthopedics, since permanent implants can limit bone development in a growing body.


Scientists find magnesium alloys especially interesting as biodegradble materials for the manufacture of implants due to their high biocompatibility, sufficiently high mechanical strength and an acceptable rate of biodegradation. In addition, the density and elasticity of magnesium alloys are close in characteristics to the human cortical bone.


The international scientific team of materials scientists from Russia and Australia has presented an innovative biodegradable alloy based on magnesium, gallium and zinc, which can be used for osteosynthesis in cases where additional treatment of diseases associated with the destruction and reduction of bone strength is required. An implant from this material can become a temporary 'skeleton' safe for the patient to replace the damaged bone, and as the bone tissue grows, which the implant material stimulates itself, it will be 'dissolved' by the body.


'We have choosen gallium as an alloying element due to its unique properties,' said co-author Alexander Komissarov, head of the Hybrid Nanostructured Materials Laboratory at NUST MISIS. 'Gallium, known as an inhibitor of bone resorption, is effective in treating disorders associated with accelerated bone loss, including osteoporosis, hypercalcemia, Paget's disease, and multiple myeloma. In addition, gallium is involved in biochemical regeneration processes, increasing the thickness, strength and mineral content of the bone. And finally, it has an antibacterial effect, which is especially important in implantology.'


According to the developers, a rather low rate of biocorrosion is also a valuable property of the developed alloy. This means that an implant made of such an alloy does not undergo too rapid decomposition in the environment of the human body that is aggressive for metals and will retain its supporting functions throughout the healing process.


'We were able to experimentally establish that the Mg-4%, Ga-4% Zn alloy, after deformation processing using equal channel angular pressing, has a unique profile of characteristics for use in bone implants due to the optimal combination of mechanical properties and corrosion rate,' said Komissarov.


Currently, the team is completing a series of laboratory experiments and is preparing for the preclinical phase of research.


Via: https://phys.org/

Note: Content may be edited for style and length.


News / Recommended news More
2020 - 07 - 22
Material scientists from NUST MISIS and the University of Western Australia have presented an innovative bioresorbable alloy based on magnesium, gallium and zinc. The material can be used for the manufacture of temporary implants in the treatment of fractures and the restoration of surgically removed areas of the bone, as well as in the treatment of osteoporosis, multiple myeloma, Paget's dise...
2020 - 07 - 16
PM China & CCEC China & IACE China 2020 gathers nearly 500 exhibitors under one roof to showcase advanced technologies, equipments and high-quality products such as high-performance materials, advanced ceramics products, new molding and processing technology, manufacturing technology of high precision parts, intelligent manufacturing technology and 3D printing technology.Acquiring latest i...
2020 - 06 - 17
A new study by researchers at Cranfield University in the UK finds that switching from aluminum to zinc alloys in the production of automotive parts could greatly enhance their longevity and sustainability.The study, conducted by Cranfield’s Sustainable Manufacturing Systems Center, evaluated the performance of three different alloys (aluminum-A380, magnesium-AZ91D and zinc-ZA8) considering overal...
2020 - 05 - 14
MIM is currently the most scientific near net shape forming technology for metal parts formation. It can flexibly adjust to various performance indexes and has been successfully applied to popular areas such as auto parts, 3C digital, medical equipment and tool locks. Hence, traditional molding technologies such as CNC fine processing, to some extent, are being replaced. Although the future of MIM...
Share:
Uniris Exhibition Shanghai Co., Ltd.
Shanghai Branch
Tel:4000 778 909
E-mail:irisexpo@163.com
  
Guangzhou Branch
Tel:020-8327 6389
E-mail:pmchina@unifair.com

CCEC CHINA official website
犀牛云提供企业云服务
Scan the QR code to visit the official website by phone