News

News

Switching from aluminum to zinc alloys could greatly improve longevity and sustainability of automot

Data: 2020-06-17
Views: 224

A new study by researchers at Cranfield University in the UK finds that switching from aluminum to zinc alloys in the production of automotive parts could greatly enhance their longevity and sustainability.


The study, conducted by Cranfield’s Sustainable Manufacturing Systems Center, evaluated the performance of three different alloys (aluminum-A380, magnesium-AZ91D and zinc-ZA8) considering overall product life cycle aspects and process characteristics through a deterministic technique for order of preference by similarity to ideal solution (TOPSIS). Over recent years aluminum alloys have been favored by the automotive manufacturing industry for their lightweight properties and lower cost.


The study suggests that aluminum is frequently chosen ahead of other alloys because of a failure to fully factor the sustainability of the end-product into consideration. When examining sustainability alongside traditional factors such as time, cost and flexibility, Cranfield’s research demonstrated that the zinc rather than the aluminum or magnesium alloys offered the better choice for automotive manufacturers.


The zinc alloy proved to be a more sustainable and higher performing option, when considering measures such as the environmental impact caused by the extraction of the metal and the quality of the parts it produces. Despite the aluminum alloy being a lower cost option, the study found that the zinc alloy also offered better value for money as the parts it creates are likely to have a much longer life than the other alloys.


Previous Cranfield research has demonstrated that the automotive industry’s focus on increasingly lighter weight cars to increase fuel efficiency, often through lightweight aluminum, may not actually be a more environmentally sustainable option.


Aluminum has become the favored material of the automotive industry for its lightweight properties and comparatively low cost. However, our study which looked in depth at sustainability, alongside traditional factors such as time, cost and flexibilty, showed that actually a zinc alloy can be better value for money as well as being more sustainable.


—Professor Konstantinos Salonitis, Head of Sustainable Manufacturing Systems Center at Cranfield


Via: https://www.greencarcongress.com

Note: Content may be edited for style and length.




News / Recommended news More
2020 - 07 - 22
Material scientists from NUST MISIS and the University of Western Australia have presented an innovative bioresorbable alloy based on magnesium, gallium and zinc. The material can be used for the manufacture of temporary implants in the treatment of fractures and the restoration of surgically removed areas of the bone, as well as in the treatment of osteoporosis, multiple myeloma, Paget's dise...
2020 - 07 - 16
PM China & CCEC China & IACE China 2020 gathers nearly 500 exhibitors under one roof to showcase advanced technologies, equipments and high-quality products such as high-performance materials, advanced ceramics products, new molding and processing technology, manufacturing technology of high precision parts, intelligent manufacturing technology and 3D printing technology.Acquiring latest i...
2020 - 06 - 17
A new study by researchers at Cranfield University in the UK finds that switching from aluminum to zinc alloys in the production of automotive parts could greatly enhance their longevity and sustainability.The study, conducted by Cranfield’s Sustainable Manufacturing Systems Center, evaluated the performance of three different alloys (aluminum-A380, magnesium-AZ91D and zinc-ZA8) considering overal...
2020 - 05 - 14
MIM is currently the most scientific near net shape forming technology for metal parts formation. It can flexibly adjust to various performance indexes and has been successfully applied to popular areas such as auto parts, 3C digital, medical equipment and tool locks. Hence, traditional molding technologies such as CNC fine processing, to some extent, are being replaced. Although the future of MIM...
Share:
Uniris Exhibition Shanghai Co., Ltd.
Shanghai Branch
Tel:4000 778 909
E-mail:irisexpo@163.com
  
Guangzhou Branch
Tel:020-8327 6389
E-mail:pmchina@unifair.com

CCEC CHINA official website
犀牛云提供企业云服务
Scan the QR code to visit the official website by phone