News

News

Platinum-gold Mix Becomes World's Most Durable Metal Alloy

Data: 2019-01-08
Views: 168

Platinum-gold Mix Becomes World's Most Durable Metal Alloy

Sandia researchers Michael Chandross (left) and Nic Argibay, overseeing the testing of the platinum-gold alloy that's now the world's most durable alloy(Credit: Randy Montoya)


Engineers at Sandia National Laboratories have developed what they say is the most durable metal alloy ever created. Made up of a combination of platinum and gold, the new material is apparently 100 times more wear-resistant than high-strength steel, which makes it the first metal alloy to join the same class as diamond. Even better, it naturally produces its own lubricant that, under normal circumstances, is extremely fiddly and expensive to make.


The Sandia alloy is made up of 90 percent platinum and 10 percent gold, and to illustrate how durable it is, the team uses a pretty colorful analogy. Imagine skidding on tires made of the new alloy – according to its inventors, only a single layer of atoms would be worn off after skidding for a mile, and you could drift around the Earth's equator 500 times before the tread would give out.

Interestingly, this particular platinum-gold alloy isn't new, but it had long been overlooked in terms of durability. That's because when engineers are developing or studying tough alloys, they usually look to the harder ones. This alloy isn't particularly hard, but was found to react to heat better, letting it resist damage from friction for longer.

"Many traditional alloys were developed to increase the strength of a material by reducing grain size," says John Curry, first author of the study. "Even still, in the presence of extreme stresses and temperatures many alloys will coarsen or soften, especially under fatigue. We saw that with our platinum-gold alloy the mechanical and thermal stability is excellent, and we did not see much change to the microstructure over immensely long periods of cyclic stress during sliding."

The researchers approached the problem using computer simulations to monitor what individual atoms were doing, and how that affected the overall properties of the material. From there, materials that have particularly desirable traits can be selected for further study, combined and eventually tested in the real world.

"We're getting down to fundamental atomic mechanisms and microstructure and tying all these things together to understand why you get good performance or why you get bad performance, and then engineering an alloy that gives you good performance," says Michael Chandross, co-author of the study.

But there's an even weirder wrinkle to the story. During testing, the researchers realized that a black film had started forming on top of the alloy. This stuff turned out to be diamond-like carbon, an effective lubricant that normally takes a pretty involved and expensive process to create.

"We believe the stability and inherent resistance to wear allows carbon-containing molecules from the environment to stick and degrade during sliding to ultimately form diamond-like carbon," says Curry. "Industry has other methods of doing this, but they typically involve vacuum chambers with high temperature plasmas of carbon species. It can get very expensive."

Not only could this spontaneous production of lubricant help the alloy last even longer, but it could be harnessed as a new, easier way to mass produce diamond-like carbon for other industrial uses.

Source: Sandia National Laboratories


News / Recommended news More
2020 - 03 - 06
Rims play a big role in appeal of a car and so distinct – shiny ones in this case – contribute a fraction to a car’s resale value.Vehicles either have steel or alloy rims. The obsession with rims is actually more pronounced among youthful car enthusiast who for reasons subscribe to the high-octane life and so appeal is a key element. Rims play a big role in the appeal of a car and so distinct...
2020 - 02 - 27
It is extremely rare to find a metal where the potential demand is much greater than what anyone can supply. It has happened the past year with the emissions metals palladium and rhodium which were up 75% and 366%; so it makes good sense that scandium may be next.Scandium-Aluminum alloy is a key material in the lightweighting industryLightweighting of vehicles is a ma...
2020 - 02 - 20
Indian exports of unwrought aluminum alloy to China surged in the last two months of 2019 as the country provided ADC12 to Chinese diecasters normally supplied by domestic smelters, leading to a surge in feedstock zorba scrap prices to India.China imported 3,600t of aluminum alloy from India in December, up from none the prior year, according to China Customs. November imports were up to 1,400t, a...
Share:
Uniris Exhibition Shanghai Co., Ltd.
Shanghai Branch
Tel:4000 778 909
E-mail:irisexpo@163.com
  
Guangzhou Branch
Tel:020-8327 6389
E-mail:pmchina@unifair.com

CCEC CHINA official website
犀牛云提供企业云服务
Scan the QR code to visit the official website by phone