News

News

New Class of Carbides Could be Toughest Yet

Data: 2018-12-11
Views: 120

New disordered materials show exceptional hardness and heat tolerance

A new class of complex ‘high-entropy’ metal carbides that incorporate five different metals has been developed by researchers in the US, who have shown the new materials can be significantly harder and more heat resistant than simple carbides.

Metal carbides such as tungsten or titanium carbide are valued for their toughness and high melting points, and are widely used in mining tools and thermal protection coatings. But most carbides used today consist of just one metal cation combined with carbon. ‘These “binary” carbides are so useful because of the extremely strong bonds between the metal and the carbon atoms,’ explains materials engineer Kenneth Vecchio of the University of California, San Diego. ‘However, there’s a trade-off: the bond that makes materials like tungsten carbide very hard and stiff also makes them very brittle. There are a few materials like tantalum carbide that are softer and less stiff but also more ductile.’ In theory, it may be possible to beat this trade-off by combining different carbides together into a single material with several different metal ions.

New Class of Carbides Could be Toughest Yet

Source: © Pranab Sarker/Duke University

The new materials combine carbon with five metal elements. The disorder creates stability, giving them even better mechanical properties than simple carbides

This is no trivial task, however. The researchers considered all possible carbides containing five of eight possible metals – a total of 56 possible materials. ‘We tried to make sure that, in the three dimensional lattice, each metal atom’s nearest metal neighbour was always a different species,’ explains Vecchio. ‘So there’s rarely two hafnium atoms or two titanium atoms next to each other. That aspect of the structure, which is very rare in ceramics, is key to making these materials significantly harder.’ However, even predicting which of these carbides could be synthesised was difficult.

Thankfully, materials scientist Stefano Curtarolo’s team at Duke University in North Carolina and Fritz Haber Institute in Berlin have for several years been developing a high-throughput program called AFLOW (Automatic Flow for Materials Discovery) to calculate material properties. Curtarolo’s group defined a new parameter called the entropy-forming ability – the propensity of a material to form a highly-disordered, single-phase crystal. They calculated the value of this parameter for all 56 carbides. When Vecchio’s group attempted to synthesise the single-phase carbides, ‘the model performed perfectly,’ says Curtarolo: those with high values of entropy-forming ability could be synthesised, those with low values separated into simpler carbides.

Moreover, some materials showed exceptional mechanical properties: MoNbTaVWC5 is still being tested, but Curtarolo would be unsurprised if it turned out to be ’the hardest material with the highest melting point ever made’. The researchers then intend to look for mixed materials that combine, for example, hardness and ductility.

‘It’s a really nice coalescence of a lot of initial work that allowed them to find new materials,’ says synthetic chemist Jakoah Brgoch of the University of Houston in Texas, US. ‘My big hope is that this approach is not limited to these cubic carbides but can be applied to other entropy-driven systems.’

Via:https://www.chemistryworld.com/news/new-class-of-carbides-could-be-toughest-yet/3009847.article


News / Recommended news More
2020 - 01 - 22
Heusler alloys are magnetic materials made from three different metals that are not magnetic individually. The alloys are used broadly for their magnetic and thermoelectric properties, and their ability to regain their original shape after being deformed, known as shape memory. Investigations by Tohoku University's advanced materials scientist An-Pang Tsai and colleagues now show that these materi...
2020 - 01 - 10
3D printed Titanium alloys under an electron microscope: sample on the left with large, elongated crystals was printed conventionally, while sample on the right with finer, shorter crystals was printed sitting on a ultrasonic generator. Credit: RMIT UniversityResearchers have used sound vibrations to shake metal alloy grains into tighter formation during 3-D printing.A study can have a signif...
2020 - 01 - 03
The ability to 3D print titanium-alloy objects certainly does open up some intriguing possibilities. That said, the finished items aren't always as strong as they could be. Now, new research suggests that adding copper to those alloys could make a big difference.Typically, when objects are being 3D printed out of titanium alloy, a laser is used to selectively melt a powder consisting of titan...
2019 - 12 - 27
Russian scientists have developed a new generation of extrahard alloys, which will be used for the creation of equipment for mining in the extreme conditions of the Arctic region, said Yevgeny Levashov, the project manager and a professor of the Russian National University of Science and Technology.According to Levashov, the new alloys were created as part of the state program for the development ...
Share:
Uniris Exhibition Shanghai Co., Ltd.
Shanghai Branch
Tel:4000 778 909
E-mail:irisexpo@163.com
  
Guangzhou Branch
Tel:020-8327 6389
E-mail:pmchina@unifair.com

CCEC CHINA official website
犀牛云提供企业云服务
Scan the QR code to visit the official website by phone